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1 Introduction

The research group Nao-Team Humboldt was founded at the end of 2007 and consists of students
and researchers at the Humboldt-Universität zu Berlin, coming from a number of different countries
during the last years, in particular from Germany, Italy, Russia, Egypt, China, Iraq, and Iran.
The team is a part of the AI research Lab of the Humboldt-Universität which is headed by Prof.
Dr. Hans-Dieter Burkhard and is led by Heinrich Mellmann. At the current state we have 2 Phd
students and around 10 Master Students in the core team. Additionally we provide courses and
seminars where the students solve tasks related to RoboCup. We have a long tradition within the
RoboCup by working for the Four Legged league as a part of the GermanTeam in recent years,
where we won the competition three times.

The current team members are: Heinrich Mellmann, Yuan Xu, Thomas
Krause, Claas-Norman Ritter, Florian Holzhauer, Marcus Scheunemann, Paul Schütte, Martin
Schneider, Kirill Yasinovskiy, Luisa Jahn, Dominik Krienelke, Christian Rekittke.

We started with Naos in May 2008 and achieved the 4. place at the competition in Suzhou
2008. We achieved 3. place in technical challenge at Graz 2009. In 2010, we won the 2. place at
RomeCup/Rom, 1. Place in Athens/Greece, and 4. place at German Open 2010. In 2010 we first
time participated simultaneously in SPL in Simulation 3D with the same code. In the 3D Simulation
we won the German Open and the AutCup competitions and achieved the 2. place at the RoboCup
World Championship 2010 in Singapore. In 2011 we won the Iran Open competition in SPL and got
4. place in Simulation 3D, at the German Open we got 4. place as well.

With our efforts in both leagues, we hope to foster the cooperation between the two leagues
and to improve both of them. We also cooperate with several other teams and associate projects at
different universities, e.g., we regularly make test games with the humanoid team FUManoids1.

Our general research fields include agent oriented techniques and machine learning with their
applications to cognitive robotics. As our record shows, our results are recognized outside RoboCup
as well. Our current research focuses among others mainly on the following topics:

– Narrowing the gap between simulated and real robots (section 2)

– Software architecture for an autonomous agent (section 3)

– Dynamic motion control (section 4)

– World modeling (section 5)

We will described them briefly in the next sections, please refer to our recent publications [1–7] for
more details.

1 http://www.fumanoids.de/



2 Simulation and Real Robots

As a common experience, there are big gaps between simulation and reality in robotics, especially
with regards to basic physics with consequences for low level skills in motion and perception. There
are some researchers who have already tried to narrow this gap, but there are only few successful
results so far. We investigate the relationships and possibilities for methods and code transferring.
Consequences can lead to better simulation tools, especially in the 3D Simulation League. At the
moment, we participate in both, Standard Platform League and 3D Simulation League with the com-
mon core of our program, see Fig. 1. As already stated, therewith, we want to foster the cooperation
between the two leagues and to improve both of them.

Fig. 1. NAO robots run in Standard Platform League(left) and 3D Simulation League(right).

When compared to real Nao robots, some devices are missing in the SimSpark, as LEDs and
sound speakers. On one hand, we extended the standard version of SimSpark by adding missing
devices like camera, accelerometer, to simulate the real robot. On the other hand, we can use a
virtual vision sensor which is used in 3D simulation league instead of our image processing module.
This allows us to perform isolated experiments on low level (e.g., image processing) and also on high
level (e.g., team behavior). Also we developed a common architecture [2], and published a simple
framework allowing for an easy start in the Simulation 3D league.

Our plan is to analyze data from sensors/actuators in simulation and from real robots at first
and then to apply machine learning methods to improve the available model or build a good implicit
model from the data of real robot. Particularly, we plan to:

– improve the simulated model of the robot in SimSpark;
– publish the architecture and a version of SimSpark which can be used for simulation in SPL;
– transfer results from simulation to the real robot (e.g., team behavior, navigation with potential

field);

So far, we have developed walking gaits through evolutionary techniques in a simulated envi-
ronment [8, 9]. Reinforcememt Learning was used for the development of dribbling skills in the 2D
simulation [10], while Case Based Reasoning was used for strategic behavior [11, 12]. BDI-techniques
have been investigated for behavior control, e.g., in [13, 14].

3 Architecture

An appropriate architecture (i.e., framework) is the base of each successful heterogeneous software
project. It enables a group of developers to work at the same project and to organize their solutions.
From this point of view, the artificial intelligence and/or robotics related research projects are



usually more complicated, since the actual result of the project is often not clear. In particular, a
strong organization of the software is necessary if the project is involved in education. Our software
architecture is organized with the main focus on modularity, easy usage, transparency and easy
testing. Thereby the main parts are:

– platform interface

– module architecture

– debug infrastructure

– communication

– testing

For the implementation we use different programming languages and existing tools and libraries.
Here is a rough overview over the used software:

– C++ at the robot

– Java for tools

– premake4 as build system

– glib for communication, etc.

– Google Protocol Buffers (protobuf) for serialization

– Google Test (googletest) and Google Mock (googlemock) for testing

In the following subsections we describe the design and the implementation of the parts men-
tioned above.

3.1 Platform Interface

In oder to integrate different platforms, our project is divided into two parts: platform independent
part and platform specific one. The platform independent part is called the Core, which can run
in any environment. All the algorithms are implemented here. The platform specific part contains
code which is applied to the particular platform. In the Core part, several different modules are
implemented under the module based architecture. Both parts are connected by a platform interface,
see Fig. 2.
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Fig. 2. Platform Interface is responsible for data transferring and execution of the Cognition and Motion.



3.2 Module Infrastructure

Our module framework is based on a blackboard architecture. It is used to organize the workflow
of the cognitive/deliberative part of the program. The framework consists of the following basic
components:

Representation objects carrying data, have no complex functionality

Blackboard container (data base) storing representations as information units

Module executable unit, has access to the blackboard (can read and write representations)

Module Manager manage the execution of the modules

A module may require a representation, in this case it has a read-only access to it. A module provides
a representation, if it has a writing access. In our design we consider only sequential execution of
the modules, thus the there is no handling for concurrent access to the blackboard necessary, i.e., it
can be decided during the compilation time.

3.3 Debug Infrastructure

Our debug infrastructure allow for the debugging code to be switched on/off during runtime. Debug
results are transferred over the network and monitored/visualized using our debuging tools. It is
designed to analyze and debug a single robot, in order to analyze and develop a team behavior of a
robot soccer team we need to connect to all the robots at the same time. For a detailed description
refer to the section 7.

3.4 Communication

Communication between the robot and a PC is essential for debugging purposes and controlling
tasks. We partitioned our architecture in a way that the user can choose to use different parts of our
software but omit others. Thus we can not assume the availability of some given debugging software
GUI (like RobotControl, cf. section 7) or the existence of all possible external helper libraries. Even
with very few assumptions about the kind of communication and the used software stack we want
to give the developers a powerful and flexible communication framework for interacting with the
robot.

3.5 Testing

As mentioned in the introduction, the Nao Team Humboldt has a large code base which is being
developed by a changing set of team members with various levels of education and knowledge about
the project. This leads to various problems with the code, especially when several developers are
working on different modules at the same time. Tests can be run by each developer after code
changes to ensure that the changes did not result in undesired side-effects or broken code. The
tests are implemented on two different granularity levels: Unit-Tests — calling a specific function
with sample input, and Integration Tests — tests of a module to ensure that a module follows the
requirements of our module framework and works properly.

We use googletest [15] as a xUnit-based testing library and googlemock [16] as a mocking frame-
work. Upon a commit in our code repository, an automated build system compiles and tests the
committed source code. If the build or the tests fail, the committer is notified by email about the
error. As a side effect, the tests can be used as examples how to interact with more complex func-
tions or modules, which enables new developers to understand the parts of our framework faster
and easier.



4 Dynamic Motion Control

The performance of a soccer robot is highly dependent on its motion ability. Together with the
ability to walk, the kicking motion is one of the most important motions in a soccer game. However,
at the current state the most common approaches of implementing the kick are based on key frame
technique. Such solutions are inflexible and costs a lot of time to adjust robot’s position. Moreover,
they are hard to integrate into the general motion flow, e.g., for the change between walk and kick
the robot has usually to change to a special stand position.

Fixed motions such as keyframe nets perform well in a very restricted way and determinate
environments. More flexible motions must be able to adapt to different conditions. There are at
least two specifications: Adaption to control demands, e.g., required changes of speed and direction,
omnidirectional walk, and adaptation to the environment, e.g., different floors. The adaptation of
the kick according to the ball state and fluent change between walk and kick are another examples.

At the current state we have a stable version of an omnidirectional walk control and a dynamic
kick which are used in the games. Along with further improvements of the dynamic walk and kick
motions our current research focuses in particular on integration of the motions, e.g., fluent change
between walk and kick.

Adaptation to changing conditions requires feedback from sensors. We experiment with the
different sensors of the NAO. Especially, adaptation to the visual data, e.g., seen ball or optical
flow, is investigated. Problems arise from sensor noise and delays within the feedback loop. Within
a correlated project we also investigate the paradigm of local control loops, e.g., we extended the
Nao with additional sensors.

We have investigated different Optimization and Machine Learning approaches, as evolutionary
approaches [17, 8] and recurrent Neural Networks [18] for Aibos and humanoid robots, and - as
mentioned earlier - Reinforcement Learning (RL) with applications for the 2D simulation league
[10]. Recently, another PhD thesis with focus on RL for humanoid robot walking is being written.

4.1 Dynamic Kick

For the implementation of the dynamic kick motion we have to consider following aspects:

– planning of the motion according to the seen ball and the desired kick direction

– reachability space of the motion

– stability while standing on one foot, and moving the other

Together with the desired direction and the strength of the kick this aspects define conditions which
have to be satisfied by the motion trajectory in order to perform the kick. In our approach we
generate the motion trajectory dynamically according to this conditions, which allows the robot to
handle different situations and adapt to changing conditions, e.g., moving ball.

We implement and test our approach in simulation and on the real robot. At the current state
the robot is able to kick the ball from any position which is reachable by the foot to any suitable
direction. Our current research concerns amongst others, kicking of a moving ball and dynamically
change between walk and kick (i.e., without stop).

For detailed description of the implementation, please refer to [5, 6]. Videos showing some ex-
periments performed on the real robot can be found on our homepage.

5 Perception and World Modeling

In order to realize a complex and successful cooperative behavior it is necessary to have a appro-
priate model of the surrounding world. Thus, one of the main focuses of our current research is the
improvement of the perceptional abilities of the robot and its capabilities to build a world model.



Fig. 3. The robot adapts motion according to changing position of the ball (left and middle), and the
changing intended direction of the kick (middle and right).

5.1 SURF based Object Recognition and Tracking

In order to get more independent from color coded image processing we are actively working on
using standard CV approaches in the SPL. One of these approaches is the SURF feature detection
as provided by the OpenCV library. We integrated OpenCV into our code base and try to learn
features to recognize objects, such as the ball, goal posts and robots. Since SURF only needs a
gray scale image and is quite tolerant to light changes, this approach minimizes the requirement
of calibration before games. One must also find ways to aggregate the detected features into more
complex models of objects (like robots). Currently we are able to detect other robots including their
rotation using distinctive features on the feet. Future research will focus on classification (learning)
and tracking of the features.

We already achieved a processing speed of about 20ms on the real robot. With special pre-
filtering and selection of the areas which should be considered for the SURF feature detection we
want to improve the runtime of the algorithm even further.

Constraint Selflocalization We investigate the application of Constraint based techniques for
navigation, and compare the approach to classical Bayesian approaches like Kalman filters and
Monte-Carlo methods. Kalman filters make certain assumptions about the environment (linearity
of the model, Gaussian noise), Monte-Carlo methods as particle filters are restricted by high com-
putational demand and thus, low dimensionality. We have investigated these methods under various
perspectives in the previous years [19–26] including missing information [27]. Constraint techniques
have to handle inconsistent data, but can be advantageous whenever ambiguous data is available
[28]. They are computationally cheap using interval arithmetic, and they can be easily communicated
allowing for cooperative localization [29–34].

Classical approaches are prone to error propagation (e.g. from camera matrix over self localization
to global positions of other objects). Using constraints, all related parameters (e.g. kinematic chain,
camera matrix, positions) can be connected by related constraints and the common solution can be
calculated by propagation techniques, [35–37].

Constraints are built by image percepts from flags, goals, lines and other objects (even dynamical
ones like ball and other players) [31]. They are able to deal with missing information [27] as well.
Other sensors such as joint sensors lead to constraints for the camera matrix. Further constraints
can use communicated information and past information, e.g., object speed. Each information can
be used to constrain the related parameters. The shape of the constraint is determined by the type
of information and the expected sensor noise. We use constraint propagation (interval arithmetic)
for further restrictions of possible values of the parameters, as for positions [35, 37]. The Figure 4



Fig. 4. Both figures show constraints, generated from percepts (pictures show the algorithm on an Aibo
field). Left: a circular constraint as generated from flag percepts. Right: a line constraint, generated from
line percepts.

illustrates constraints created from visual perception and used to estimate the robots position on
the field.

Recent investigations and experiments deal with the treatment of inconsistencies (e.g. by ghost
percepts) and further increase of performance. Furthermore we developed and tested a constraint-
based player model.

6 Behavior

The Extensible Agent Behavior Specification Language — XABSL cf. [38] is a behavior description
language for autonomous agents based on hierarchical finite state machines. XABSL is originally
developed since 2002 by the German Team cf. [39]. Since then it turned out to be very successful
and is used by many teams withing the RoboCup community. We use Xabsl to model the behavior
of single robots and of the whole team in the Simulation League 3D and also in the SPL.

Fig. 5. (left) XabslEditor: On the left side you see the source code of an behavior option. On the right
side the state machine of this option is visualized as a graph. (right) In the man frame the execution path
is shown as a tree; Bottom some monitored symbols can be seen, the developer can decide which symbols
should be monitored; On the left side there is a list of buffered frames, which is very useful to see how the
decisions changed in the last time;



In order to be independent from the platform we develop our tools in Java. In particular we
are working on a Java based development environment for XABSL named XabslEditor. In fact, this
tool consists of an full featured editor with syntax highlighting, a graph viewer for visualization of
behavior state machines and an integrated compiler. Figure 5 (left) illustrates the XABSL Editor
which an open behavior file.

Another useful tool we are working on is the visualizer for the XABSL execution tree, which
allows to monitor the decisions made by the robot on runtime. At the current state this visualizer
is part of our debugging and monitoring tool RobotControl. The Figure 5 (right) illustrates the
execution tree of the behavior shown within the visualizer.

7 Debuging and Tools

In order to develop a complex software for a mobile robot we need possibilities for high level de-
bugging and monitoring (e.g., visualize the posture of the robot or its position on the field). Since
we don’t exactly know which kind of algorithms will be debugged, there are two aspects very im-
portant: accessibility during the runtime and flexibility. The accessibility of the debug construct is
realized based on the our communication framework (see 3.4). Thus, they can be accessed during the
runtime either directly by telnet or using a visualization software like RobotControl as shown in the
Fig. 6). Further, all debug concepts are realized based on the described command executor concept,
thus it is easy to introduce new concepts. In contrast to the other parts, the debug infrastructure is
not separated from the code, all concepts are statically available and thus they can be used at any
position in the code. Some of the ideas were evolved from the GT-Architecture [40]. The following
list illustrates some of the debug concepts:

debug request activate/deactivate code parts
modify allows a modification of a value (in particular local variables)
stopwatch measures the execution time
parameter list allows to monitor and to modify lists of the parameters
drawings allows visualization in 2D/3D, thereby it can be drawn into the image or on the field

(2D/3D)

As already mentioned, these concepts can be placed at any position in the code and can be accessed
during the runtime. Similar to the module architecture, the debug concepts are hidden by macros to
allow simple usage and to be able to deactivate the debug code at the compilation time if necessary.

Additionally, to these individual debugging possibilities there are some general monitoring possi-
bilities: the whole content of the blackboard, the dependencies between the modules and representa-
tions and execution times of each single module. The Fig. 6 illustrated some of the visualizations of
the debug concepts. In particular a field view, a 3D view, behavior tree, plot and the table of debug
requests are shown. The TeamControl shown in the Fig. 6 allows for the visualization of the team
behavior. In particular the positions of the robots on the field and their intended motion direction
are visualized.
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23. Jüngel, M., Mellmann, H., Spranger, M.: Improving vision-based distance measurements using reference
objects. In Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F., eds.: RoboCup 2007: Robot Soccer World
Cup XI. Volume Volume 5001/2008 of Lecture Notes in Computer Science., Springer Berlin / Heidelberg
(2007) 89–100
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31. Göhring, D., Burkhard, H.D.: Multi robot object tracking and self localization using visual percept
relations. In: Proceedings of IEEE/RSJ International Conference of Intelligent Robots and Systems
(IROS), pages 31–36, IEEE (2006)
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